Prosím čekejte...
Nepřihlášený uživatel
SVK
Nacházíte se: Studentská vědecká konference  → Předchozí ročníky  → SVK 2017
iduzel: 40852
idvazba: 48125
šablona: stranka
čas: 7.5.2024 15:09:17
verze: 5351
uzivatel:
remoteAPIs: https://cis-prihlasovadlo.vscht.cz/svk/?year=2017
branch: trunk
Server: 147.33.89.153
Obnovit | RAW
iduzel: 40852
idvazba: 48125
---Nová url--- (newurl_...)
domena: 'svk.vscht.cz'
jazyk: 'cs'
url: '/predchozi/svk-2017'
iduzel: 40852
path: 1/28821/43620/28823/43889/40852
CMS: Odkaz na newurlCMS
branch: trunk
Obnovit | RAW

SVK 2017

Sborníky 2017: FCHT, FTOP, FPBT, FCHI

Termín konání SVK

V akademickém roce 2017/18 proběhne SVK v pondělí 20. 11. 2017, kdy je vyhlášen Rektorský den.

Organizace SVK

Organizace SVK je zajišťována prostřednictvím děkanátů fakult. Oddělení pro vědu a výzkum (VaV) zajišťuje elektronické vydání sborníku prací a koordinaci soutěže na fakultách.

Soutěž bude probíhat v přednáškových a posterových sekcích, výběr formy je na rozhodnutí vedení fakulty.

Minimální počet prací soutěžících v každé sekci je šest, maximální počet prací v sekci není limitován. Každý student může přihlásit jednu soutěžní práci.

Na Oddělení VaV má SVK na starosti Veronika Popová, tel. 220 44 3806, veronika.popova@vscht.cz. Dotazy ohledně elektronického přihlašovacího systému směřujte na jitka.cejkova@vscht.cz.

Časový harmonogram přípravy SVK 2017

  • Do 27. 9. 2017 jmenuje děkan fakultního organizátora SVK a jeho jméno nahlásí děkanáty na odd. VaV. Dále jmenuje pracovníky zodpovědné za organizaci jednotlivých sekcí. Fakultní a ústavní organizátoři poté budou seznámeni s elektronickým přihlašovacím systémem na stránkách http://svk.vscht.cz.
  • Od 10. 10. 2017 do 22. 10. 2017 se studenti závazně přihlásí do soutěže pomocí elektronického přihlašovacího systému http://svk.vscht.cz. K přístupu do systému použijí své školní přihlašovací údaje, vyplní ročník, jméno svého školitele a název svého příspěvku. Každý student může přihlásit jednu soutěžní práci a to s vědomím svého školitele.
  • Fakulty na základě počtu přihlášených studentů nahlásí do 25. 10. 2017 na odd. VaV počet sekcí na fakultě a počet soutěžních prací v jednotlivých sekcích.
  • Do 8. 11. 2017 studenti pomocí elektronického přihlašovacího systému nahrají anotaci svojí práce (max. 1300 znaků, max. 1 obrázek rozměru 16:9, možnosti formátování jsou návodně uvedeny v přihlašovacím systému).
  • Do 14. 11. 2017 fakultní organizátoři v elektronickém přihlašovacím systému roztřídí všechny soutěžní práce do jednotlivých sekcí na fakultě, dále uvedou názvy sekcí, místo a čas konání a složení komisí. Složení hodnotících komisí pro jednotlivé sekce určí vedení fakulty. Komise je nejméně tříčlenná a členy z řad akademických pracovníků mohou doplnit odborníci spolupracujících firem a průmyslových podniků. Předsedou komise by měl být profesor nebo docent.
  • Sborníky jednotlivých fakult budou automaticky vygenerovány na základě údajů uvedených v elektronickém přihlašovacím systému.

Další informace k soutěži

  • U příležitosti SVK je vyhlášena soutěž o Cenu Julie Hamáčkové v kategorii Studentská práce typu SVK; vyhlášení soutěže a bližší informace na http://gro.vscht.cz/cjh
  • Občerstvení pro komise a soutěžící hradí ústavy z vlastních prostředků.
  • Organizace průběhu soutěže v sekcích je výlučně věcí rozhodnutí fakult.
  • Finanční příspěvek na ocenění soutěžních prací bude hrazen z prostředků dotace na specifický výzkum (IGA 2017). Jeho výše bude stanovena dohodou proděkanů a prorektora pro VaV podle celkového počtu přihlášených soutěžních prací. Oceněna bude účast a dále první tři místa v každé sekci. Výplata příspěvku studentům bude provedena bezhotovostním převodem, zajistí děkanáty fakult. Je vítána další finanční nebo věcná podpora účastníků SVK ze sponzorských zdrojů. Její výše (hodnota), způsob rozdělení a výplaty je plně v kompetenci komise sekce.
  • Vytištění diplomů budou zajišťovat fakulty.

SVK 2017 – vyhlášení

Nejste zalogován/a (anonym)

Chemické inženýrství 2 (B03 - 8:30)

  • Předseda: prof. Ing. Dalimil Šnita, CSc.
  • Komise: Ing. Mária Zedníková, Ph.D., Ing. Matěj Novák, Ing. Pavel Kupka, Ing. Jan Nájemník, CSc. (Synthomer)
Čas Jméno Ročník Školitel Název příspěvku Anotace
8:40 Adrián Žák B3 doc. Ing. Petr Kočí, Ph.D. Porovnanie kinetiky vzniku povrchových oxidov na automobilových katalyzátoroch Pt/Al2O3 a Pd/Al2O3. detail

Porovnanie kinetiky vzniku povrchových oxidov na automobilových katalyzátoroch Pt/Al2O3 a Pd/Al2O3.

V dnešnom svete sa stále kladie väčší dôraz na kvalitu životného prostredia. Dôsledkom toho je neustále sprísňovanie emisných limitov cestných motorových vozidiel so spaľovacími motormi. Z tohoto dôvodu sme nútení vylepšovať zariadenia a technológie, ktoré slúžia k riadeniu spaľovania zmesi v motoru a následnému čisteniu spalín a redukcií škodlivín. K takýmto technológiám patria automobilové katalyzátory. V tejto práci sú zvlášť porovnané dva typy katalytických kovov, využívaných v oxidačných katalyzátoroch za rovnakých pracovných podmienok (plynná zmes, veľkosť častíc, teplota,...). S pozornosťou venovanou vzniku oxidov daných kovov. Tento dej je sledovaný pomocou konverzie oxidu dusnatého v plynnej zmesi, keďže pri vzniku oxidov platiny a oxidov paládia dochádza k zníženiu aktivity katalyzátoru, čo je príčinou zníženia konverzie oxidu dusnatého na oxid dusičitý.
9:00 Kateřina Wodwudová B3 doc. Ing. Petr Kočí, Ph.D. Charakterizace porézních katalytických vrstev detail

Charakterizace porézních katalytických vrstev

Katalytické konvertory výfukových plynů jsou ve formě keramických monolitů s mnoha rovnoběžnými kanálky, na jejichž povrch je nanesena porézní katalytická vrstva. Tato vrstva je tvořena částicemi γ-Al2O3, mezi kterými se nacházejí makropóry. Částice γ-Al2O3 obsahují mesopóry, ve kterých jsou rozmístěny nanočástice vzácných kovů, na kterých probíhají reakce. Jak porézní struktura, tak velikost nanočástic kovů zásadně ovlivňují účinnost konvertoru, při jeho vývoji je proto nutné obojí detailně popsat, což platí nejen pro automobilové, ale také naprostou většinu heterogenních katalyzátorů.   Cílem této práce je charakterizace vrstev γ-Al2O3 a Pt/γ-Al2O3 pomocí sorpce plynů, rastrovacího a transmisního elektronového mikroskopu. Důležitými parametry pro zvolení vhodného postupu nanášení vrstvy do kanálků monolitu je její tloušťka, makroporozita a rovnoměrnost. Tyto parametry jsme vyhodnotili pomocí obrazové analýzy snímků z rastrovacího elektronového mikroskopu (SEM). V transmisním elektronovém mikroskopu (TEM) jsme zkoumali nanokrystalky Pt v mesopórech částic γ-Al2O3 "(viz obrázek)" a z pořízených snímků jsme obrazovou analýzou vyhodnotili průměrnou velikost krystalků. Velikost mesopórů a měrný povrch vzorku byly změřeny pomocí fyzisorpce dusíku.



9:20 Jakub Smutek B3 Ing. Martin Isoz Numerical simulation of flow in  the Super-pak packing family detail

Numerical simulation of flow in  the Super-pak packing family

The distillation is currently the most energy-intensive technology of the chemical industry. Commonly, the distillation is performed in the columns filled with a structured packing. Structured packings are complex structures used to increase the size of the interface available for the mass transfer. Because of the complexity of the packings and of the physical phenomena occurring during the distillation, the design of the distillation columns is based mostly on empirical data. In this work, we focus on modeling the gas flow in the SuperPak family of structured packings. First, we propose an algorithm for generation of the packing geometry. Next, we construct and validate a three-dimensional computational fluid dynamics (CFD) model of gas flow through SuperPak 250.Y and SuperPak 350.Y packings. The model validation is done by comparing experimental data of dry pressure loss to the values computed by our model. The obtained difference between the CFD estimates and experiments is bellow 10%. Finally, we present a parametric study of the SuperPak 250.Y packing geometry. The devised modeling approach may be used for optimization of the SuperPak type packing geometry with respect to the gas flow. Furthermore, the proposed CFD model may be extended to account for the multiphase flow.
9:40 Přemysl Richtr B3 Ing. Jaromír Pocedič, Ph.D. Laboratorní zinko-vzduchová průtočná baterie detail

Laboratorní zinko-vzduchová průtočná baterie

V dnešní době je elektrická energie nedílnou součástí každé minuty našeho života. Jelikož spotřeba elektřiny bude stále růst, je třeba hledat nové zdroje na její výrobu a možnosti její akumulace. S ukládáním elektrické energie se nejčastěji skloňují technologie jako Li-iontové baterie, vanadové redoxní průtočné baterie či vodíková energetika. Avšak masové uplatnění zmíněných technologií bude čelit problémům s nedostatečným nerostným bohatstvím či nedostatečnou energetickou účinností technologií, a proto je potřeba se poohlížet po alternativních redoxních párech. Jednou z možností je chemie zinek-vzduch, která poskytuje kompromis mezi energetickou účinností a nerostnými zásobami základní surovin, což ovlivňuje výslednou cenu baterií. Nevýhodou je ovšem nízký počet nabíjecích a vybíjecích cyklů způsobený změnou tvaru zikové elektrody a růstu zinkových dendritů. Jednou z možností, jak vyřešit zmíněné nevýhody, je depozice zinku za kontrolovaných podmínek, čehož lze dosáhnout v průtočných bateriích. Jelikož je chování chemie zinek-vzduch v průtočných bateriích málo prozkoumanou oblastí, nelze spoléhat na komerční řešení. Proto si dává tato práce za cíl vývoj laboratorní sekundární průtočné zinko-vzduchové baterie, která umožní následný výzkum v této oblasti. 
10:20 Tomáš Pachl B3 doc. Ing. Petr Kočí, Ph.D. Studie reakční kinetiky oxidace CO a C3H6 na katalyzátoru automobilových výfukových plynů detail

Studie reakční kinetiky oxidace CO a C3H6 na katalyzátoru automobilových výfukových plynů

V současnosti se kladou stále větší nároky na složení výfukových plynů u automobilů, a proto je nutné porozumět chování katalyzátorů a správně jej předvídat. Tato studie se zabývá deaktivací katalyzátoru při oxidaci propenu v široké škále reakčních podmínek typických pro trojcestný (TWC) a dieselový oxidační (DOC) katalyzátor obsahující platinu a/nebo palladium. Deaktivace je způsobena částečnou oxidací propenu na meziprodukty, které se akumulují na povrchu, blokují aktivní centra a snižují tak jeho efektivnost zejména při oxidaci CO. To má za následek v úzkém teplotním pásmu pokles konverze CO s rostoucí teplotou. Za vyšších teplot a relativně vyššího obsahu O2 vůči redukujícím složkám (chudé podmínky) se meziprodukty stačí oxidovat a nehromadí se na povrchu. Tento efekt byl nejmarkantnější na Pt katalyzátoru v přítomnosti NO za stechiometrických a mírně chudých podmínek. Experimentálně pozorované jevy byly zohledněny v počítačových simulacích. Do kinetického modelu byly zahrnuty rovnice popisující částečnou oxidaci propenu na povrchové meziprodukty, které blokují katalytická centra a inhibují reakce, jejich oxidace a dále částečná oxidace propenu na CO, přispívající k dočasnému nárůstu koncentrace CO. Vyvinutý model umožňuje preciznější předpověď konverze klíčových složek.
10:40 Lenka Kolářová B3 prof. Dr. Ing. Juraj Kosek Elektrostatické nabíjení komerčních plastů za účelem jejich separace detail

Elektrostatické nabíjení komerčních plastů za účelem jejich separace

Demands for plastic are still increasing, especially in car industry, packaging, construction or electronics. Hundreds of megatons of plastic waste is produced each year. Recycling is limited due to the lack of effective and efficient separation method. Thus, majority of plastic waste is burned in furnaces instead of being recycled. Our long-term vision is to develop a cost-efficient plastic separator based on the principle of tribocharging. The goal of this work was to determine parameters affecting the charging of common plastic materials (PP, HDPE, PS, PET and PMMA) and to find conditions leading to the different charging of each material. First, we charged grinded plastics by corona charging unit to see particle performance, especially what is the saturation charge for studied materials. Then, we constructed an apparatus for triboelectric charging of powders with a possibility to control stress applied on our samples. Bigger applied stress led to bigger charge on the powder. This is mostly because the rough particle surface is flattening and consequently the total particle area available for charging is increasing. We showed that colorants are important additives affecting the charging of plastic.
11:00 Jakub Klimošek B3 prof. Dr. Ing. Juraj Kosek Optimalizace procesu měření difuze v polymerech metodou "pressure-decay" detail

Optimalizace procesu měření difuze v polymerech metodou "pressure-decay"

Dynamika transportu plynných složek v polymerních materiálech je jednou z důležitých charakteristik, které je nutno znát pro celou řadu aplikací v polymerním průmyslu. V této práci je kladen důraz na optimalizaci dosavadní metody měření difuzních koeficientů pomocí dynamiky tlakové odezvy a rozšíření knihovny difuzních dat. Byla studována difuze pro různé penetranty v rozdílných polymerních vzorcích při odlišných teplotách. Díky optimalizacím stávající aparatury, metody měření a zpracování naměřených dat můžeme měřit difuzní koeficienty i u uhlovodíků, které mají nízké hodnoty tlaku nasycených par při studovaných teplotách, jako jsou n-hexan, 1-hexen, iso-heptan či cyklopentan. Výsledná data byla porovnávána s gravimetrickým měřením rozpustnosti, což vede k dalšímu zkvalitnění výsledných difuzivit a porozumění probíhajícím dějům. Stávající proces měření je ale stále časově náročný a proto jsme se rozhodli celý proces automatizovat. Díky automatizaci budeme schopni naměřit velké množství experimentů v kratším čase a získat tak statisticky přesnější hodnoty difuzivit. Přispějeme tak k systematickému mapování difúzního transportu v průmyslově relevantních vzorcích polyethylenu s hustotou 900 až 970 kg/m3.
11:20 Martin Šourek B3 Ing. Martin Isoz DEM-CFD  study of flow in a random packed bed detail

DEM-CFD  study of flow in a random packed bed

Most catalytic surface reactions as well as other industrial applications take advantage of fixed packed bed reactors. Designers of these reactors rely mostly on empirical formulas derived for various simplifying assumptions, e.g. uniformly distributed porosity. The made simplifications and especially the assumption of uniformly distributed porosity fail if the tube to particle diameter ratio goes under 10 and the „wall effect“ becomes more significant. Thus, the complete three-dimensional structure of the packed bed has to be considered. Thanks to ongoing improvements in numerical mathematics and computational power, the methods of computational fluid dynamics (CFD) have become a great tool for comprehensive description of these problematic packed beds. Three-dimensional simulations of the flow through two fixed beds differing in the type of the used particle are presented and compared with available experimental and empirical results. To generate the random fixed beds, we propose a custom method based on DEM code implemented in open-source software Blender. Thereafter, OpenFOAM tools (snappyHexMesh, simpleFoam) are used for creation of the computational mesh and solution of the governing equations describing a single-phase flow in the packed bed.



Aktualizováno: 4.5.2020 16:36, : Jitka Čejková

VŠCHT Praha
Technická 5
166 28 Praha 6 – Dejvice
IČO: 60461373
DIČ: CZ60461373

Datová schránka: sp4j9ch

Copyright VŠCHT Praha
Za informace odpovídá Oddělení komunikace, technický správce Výpočetní centrum

VŠCHT Praha
na sociálních sítích
zobrazit plnou verzi