Prosím čekejte...
Nepřihlášený uživatel
SVK
Nacházíte se: Studentská vědecká konference  → SVK 2019
iduzel: 49226
idvazba: 55645
šablona: stranka
čas: 1.12.2021 03:29:36
verze: 5002
uzivatel:
remoteAPIs: https://cis-prihlasovadlo.vscht.cz/svk/?year=2019
branch: trunk
Obnovit | RAW

SVK 2019

Sborníky 2019: FCHT, FTOP, FPBT, FCHI 

 

Termín konání SVK

V akademickém roce 2019/2020 proběhla SVK ve čtvrtek 21. 11. 2019.

Organizace SVK

Organizace SVK je zajišťována prostřednictvím děkanátů fakult. Oddělení pro vědu a výzkum (VaV) zajišťuje rozpočet SVK z dotace MŠMT na specifický vysokoškolský výzkum. Ostatní zdroje zajišťují fakulty.

Soutěž bude probíhat v přednáškových a posterových sekcích, výběr formy je na rozhodnutí vedení fakulty. Minimální počet prací soutěžících v každé sekci je šest, maximální počet prací není limitován.

V případě dotazů ohledně SVK se obracejte na příslušné ústavní či fakultní koordinátory.

Na Oddělení VaV má SVK na starosti Veronika Popová, tel. 220 44 3806, veronika.popova@vscht.cz. Dotazy ohledně elektronického přihlašovacího systému směřujte na jitka.cejkova@vscht.cz.

Časový harmonogram přípravy SVK 2019

  • Do 1. 10. 2019 jmenuje děkan fakultního organizátora SVK a jeho jméno nahlásí děkanáty na odd. VaV. Dále určí pracovníky zodpovědné za organizaci jednotlivých sekcí.
  • Od 7. do 21. 10. 2019 se studenti závazně přihlásí do soutěže pomocí elektronického přihlašovacího systému http://svk.vscht.cz. K přístupu do systému použijí své školní přihlašovací údaje, vyplní ročník, jméno vedoucího práce a název svého příspěvku. Každý student může přihlásit jednu soutěžní práci a to s vědomím svého vedoucího práce.
  • Fakulty na základě počtu přihlášených studentů nahlásí do 25. 10. 2019 na odd. VaV počet sekcí na fakultě a počet soutěžních prací v jednotlivých sekcích.
  • Do 8. 11. 2019 studenti pomocí elektronického přihlašovacího systému nahrají anotaci svojí práce (max. 1300 znaků, max. 1 obrázek rozměru 16:9, možnosti formátování jsou návodně uvedeny v přihlašovacím systému).
  • Do 15. 11. 2019 fakultní organizátoři v elektronickém přihlašovacím systému roztřídí všechny soutěžní práce do jednotlivých sekcí na fakultě, dále uvedou názvy sekcí, místo a čas konání a složení komisí. Složení hodnotících komisí pro jednotlivé sekce určí vedení fakulty. Komise je nejméně tříčlenná a členy z řad akademických pracovníků mohou doplnit odborníci spolupracujících firem a průmyslových podniků. Předsedou komise by měl být profesor nebo docent.
  • Sborníky jednotlivých ústavů/sekcí a fakult budou automaticky vygenerovány na základě údajů uvedených v elektronickém přihlašovacím systému.

Další informace k soutěži

  • U příležitosti SVK je vyhlášena soutěž o Cenu Julie Hamáčkové v kategorii Studentská práce typu SVK; vyhlášení soutěže a bližší informace na http://gro.vscht.cz/cjh
  • Občerstvení pro komise a soutěžící hradí ústavy z vlastních prostředků.
  • Organizace průběhu soutěže v sekcích je výlučně věcí rozhodnutí fakult.
  • Finanční příspěvek na ocenění soutěžních prací bude hrazen z prostředků dotace MŠMT na specifický vysokoškolský výzkum (IGA 2019). Jeho výše bude stanovena dohodou proděkanů a prorektora pro VaV podle celkového počtu přihlášených soutěžních prací. Oceněna bude účast a dále první tři místa v každé sekci. Výplata příspěvku studentům bude provedena bezhotovostním převodem, zajistí děkanáty fakult. Je vítána další finanční nebo věcná podpora účastníků SVK ze sponzorských zdrojů. Její výše (hodnota), způsob rozdělení a výplaty je plně v kompetenci komise sekce.
  • Vytištění diplomů budou zajišťovat fakulty.

 

Rekapitulace termínů: 

Datum

Akce

1. 10.

jmenování fakultního organizátora a organizátorů jednotlivých sekcí

21. 10.

uzávěrka podávání přihlášek

8. 11.

uzávěrka nahrávání anotací

15. 11.

seznam sekcí, místo a čas konání, složení komisí, seznam sponzorů jednotlivých sekcí

18. 11.

Hotová příprava pro vygenerování sborníků v aplikaci svk

21. 11.

SVK

6.12.

Písemná zpráva z fakult na VaV o průběhu soutěže

 

 SVK 2019 - vyhlášení

Nejste zalogován/a (anonym)

Chemical informatics and bioinformatics (B34 - 13:00)

  • Předseda: Assoc. Prof. Daniel Svozil, MSc, PhD
  • Komise: Michal Kolář, MSc, PhD (Institute of Molecular Genetics, ASCR), Filip Lankaš, MSc, PhD, Martin Bednář, MSc, MBA (DNANexus), Jiří Jirát, MSc, PhD, Ondřej Klempíř, MSc (Merck Sharp & Dohme)
Čas Jméno Ročník Školitel Název příspěvku Anotace
13:00 Lucie Červenková B3 doc.Ing. Filip Lankaš, Ph.D. Temperature dependent structure, dynamics and deformability of DNA A-tracts detail

Temperature dependent structure, dynamics and deformability of DNA A-tracts

DNA A-tracts are sequences of several adenines (A) or thymines (T) which do not contain a TA dinucleotide. They induce bending to the DNA double helix and exhibit peculiar structural properties. In the genome, A-tracts prevent nucleosome formation, contributing to the regulation of gene expression. At elevated temperatures, A-tracts undergo a premelting transition in which they loose their salient features, becoming structurally more similar to canonical B-DNA. However, the microscopic mechanism of the transition is not fully understood. In my work I set out to investigate the mechanism of premelting by means of atomic-resolution molecular dynamics simulations of A-tracts at different temperatures. The analysis of the simulated data should provide insight into the changes of A-tract structure and mechanical stiffness associated with premelting. The results will help understand the mechanisms of gene regulation in thermophilic organisms and may also be useful in the design of artificial DNA nanostructures.
13:15 Bc. Jaroslav Kurfürst M2 Mgr. Jan Pačes, Ph.D. Rozšíření databáze kuřecích endogenních retrovirů detail

Rozšíření databáze kuřecích endogenních retrovirů

Majority of eukaryotic genomes is composed of DNA repetitive sequences. Part of them are retroviral elements. They are remnants of the retroviral genomes that in the past infected the eukaryotic organisms in question, reversed transcribed and integrated into the host DNA. For example, retroviral elements comprizes up to ten per cent of the human genome. Recently, we constructed database of the human retroviral elements. Now we want to compare the human elements with retroviral elements of other eukaryotic genomes. In the course of this study we are expanding the existing database of chicken elements with the elements of the newly sequenced Gallus gallus genome.
13:30 Bc. Eva Matoušková M2 doc.Ing. Filip Lankaš, Ph.D. Structure and dynamics of naked and nucleosomal DNA containing pyrimidine-pyrimidone (6-4) photoproduct detail

Structure and dynamics of naked and nucleosomal DNA containing pyrimidine-pyrimidone (6-4) photoproduct

Ultraviolet radiation from the Sun can produce a covalent linkage between two adjacent pyrimidine bases in DNA to form pyrimidine (6-4) pyrimidone photoproduct. In my project I study DNA containing the pyrimidine dimer in naked oligomers and in nucleosomes, and two control DNA oligomers without the dimer. The systems were simulated by the molecular dynamics method with the OL15 force field for DNA and with explicit inclusion of water and ions. The DNA dynamics was analysed by measuring hydrogen bonds in the dimer and other parameters describing the structure. I also performed cluster analysis to identify separate conformational states. The results indicate that damaged DNA in the nucleosome exhibits more pronounced conformational dynamics that the naked undamaged DNA. This may provide mechanistic explanation of the observed high binding affinity of the UV-DDB repair protein to nucleosomal DNA.  
13:45 Bc. Anna Pavlů M2 prof. Ing. Tomáš Ruml, CSc. Crosslink and MS spectra generator for the study of M-PMV matrix protein detail

Crosslink and MS spectra generator for the study of M-PMV matrix protein

The matrix protein of the Mason-Pfizer monkey virus is the N-terminal part of its structural polyprotein Gag. The matrix protein determines where the immature virus particles assemble and later it is crucial for the interaction with the plasma membrane during budding. During the self-assembly the matrix protein forms oligomers. The locations where the matrix monomers interact with each other can be studied by crosslinking mass spectrometry. However, these crosslinked peptides are generally of low abundance and in turn are poorly identifiable in the MS spectra. To mitigate this disadvantage, a software tool has been developed to simulate the process of protein crosslinking which is followed by computing theoretical MS spectra of the crosslinked fragments and finally, comparing those to the experimental MS spectra.
14:00 Bc. Jiří Reiniš B1 Mgr. Jan Pačes, Ph.D. Analysis of expression of human and mouse endogenous retroviruses in thymus detail

Analysis of expression of human and mouse endogenous retroviruses in thymus

Endogenous retroviruses comprise millions of discrete genetic loci integrated into the genomes of all vertebrates. These genetic loci represent past retroviral infections and their ability to integrate into the chromosomal DNA of germ-line cells has endowed retroviruses with the potential to be fixed in the genomes during evolution. Despite the fact that endogenous retroviruses lost this ability to infect other cells, presence of strong promotors in their sequences allows them to express some of their genes in host cells. In this work, we study gene expression of human and mouse ERVs in the thymus in context of autoimmune diseases. We analyze RNAseq data and compare expression patterns of ERVs in thymus to those in other tissues. Single cell RNAseq data from mTECs is analyzed to obtain detailed expression patterns. Our aim is to assess to what extent are HERVs included in the presentation of self antigens during negative selection of T cells and discuss what are the implications in autoimmune disorders. Results from this diploma work will be integrated into the internationally acclaimed database of endogenous retroviruses HERVd.
14:15 Anna Vavříková M1 Mgr. Jan Pačes, Ph.D. Detection of expression of human endogenous retroviruses in different tissues detail

Detection of expression of human endogenous retroviruses in different tissues

Endogenous retroviruses comprise millions of discrete genetic loci integrated into the genomes of all vertebrates. These genetic loci represent past retroviral infections and their ability of integration into the chromosomal DNA of germ-line cells has endowed retroviruses with the potential to be fixed in the genomes during evolution. Despite the fact that endogenous retroviruses lost theis abitily to infect other cells, presence of strong promotors in their sequences allows them to express some of their genes in host cells. Results from this bachelor work are integrated into the internationally acclaimed database of endogenous retroviruses HERVd.
14:30 Martina Zoubková B2 RNDr. Michal Kolář, Ph.D. Simulace ribozomálního proteinu eS7 detail

Simulace ribozomálního proteinu eS7

The presentation is about simulation of a ribosomal protein eS7 and its mutation, where a valine is replaced by phenylalanine. Ribosomes serve as a site of protein synthesis. Mutation is a change in genetic sequence and it can have an impact on the function of a protein. The studied mutation causes Diamond–Blackfan anemia in humans. We hope that the research will shed some light on the molecular cause of this illness.The purpose of this study is to test, if the mutation causes a structural change of the eS7. Such a change may affect the protein function. Simulations are performed in Linux environment using GROMACS (GROningen MAchine for Chemical Simulations) program package. Same conditions apply for the two – native and mutated – protein simulations. During the evaluation, we analyze the RMSD (Root-Mean-Square-Deviation) of a protein and of several its parts in time t. Previous simulations of both proteins did not reveal any fundamental changes of the protein structure, but these simulations were too short to be conclusive. Another, longer, simulations are currently running. These should be long enough to provide more data to make a better evaluation of the mutation effect.
Aktualizováno: 4.5.2020 16:18, : Jitka Čejková

VŠCHT Praha
Technická 5
166 28 Praha 6 – Dejvice
IČO: 60461373
DIČ: CZ60461373

Datová schránka: sp4j9ch

Copyright VŠCHT Praha
Za informace odpovídá Oddělení komunikace, technický správce Výpočetní centrum

VŠCHT Praha
na sociálních sítích
zobrazit plnou verzi